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A B S T R A C T   

Antioxidant peptides can protect against free radical-mediated diseases, especially food-derived antioxidant 
peptides are considered as potential competitors among synthetic antioxidants due to their safety, high activity 
and abundant sources. However, wet experimental methods can not meet the need for effectively screening and 
clearly elucidating the structure-activity relationship of antioxidant peptides. Therefore, it is particularly 
important to build a reliable prediction platform for antioxidant peptides. In this work, we developed a platform, 
AnOxPP, for prediction of antioxidant peptides using the bidirectional long short-term memory (BiLSTM) neural 
network. The sequence characteristics of peptides were converted into feature codes based on amino acid de-
scriptors (AADs). Our results showed that the feature conversion ability of the combined-AADs optimized by the 
forward feature selection method was more accurate than that of the single-AADs. Especially, the model trained 
by the optimal descriptor SDPZ27 significantly outperformed the existing predictor on two independent test sets 
(Accuracy = 0.967 and 0.819, respectively). The SDPZ27-based AnOxPP learned four key structure-activity 
features of antioxidant peptides, with the following importance as steric properties > hydrophobic properties 
> electronic properties > hydrogen bond contributions. AnOxPP is a valuable tool for screening and design of 
peptide drugs, and the web-server is accessible at http://www.cqudfbp.net/AnOxPP/index.jsp.   

1. Introduction 

High-level reactive oxygen species (ROS) in human body increases 
the risks of developing cancers, diabetes, aging, cardiovascular diseases, 
and neurodegenerative disorders [1]. Antioxidant peptides can effec-
tively eliminate reactive oxygen species (ROS) and block free 
radical-mediated reactions [2,3]. Moreover, antioxidant peptides have 
the merits of low-/non-toxicity, abundant food sources, diverse func-
tions [4,5]. These merits confer their great potentials in widely 
applications. 

Massive efforts have been made to develop antioxidant peptides. 
More than 1000 antioxidant peptides have been isolated from milk, 
animal- and plant-derived food sources, and seafood using enzymatic 
digestion, fermentation or autolysis [6,7]. However, the traditional 
experimental methods are time-consuming and laborious [8]. Currently, 
computational methods have been used for screening, design and 
mechanism exploration of antioxidant peptides, including molecular 

docking, molecular dynamics simulations, bioinformatics modeling, etc. 
Quantitative structure− activity relationship (QSAR) is a classical 
ligand-based virtual screening method. QSAR mainly seeks a mathe-
matical relationship between the physicochemical properties of chemi-
cal structures and their biological activities [9]. 

Structural characterization is the core of the QSAR modeling. In 
QSAR studies of peptides, amino acid descriptors (AADs) are important 
translators of peptide sequence/structure information. They can effec-
tively describe a variety of property information, such as physico-
chemical, charged, and geometric properties of peptides [9,10]. 
Compared with conventional encoding methods, such as one hot residue 
classification, pseudo amino acid encoding, and k-mer sparse matrix, 
AADs have the advantages of accurate representation, diverse proper-
ties, and interpretability, and can translate the first-level peptide 
sequence into a high-dimensional vector that contains multidimensional 
data information [11–13]. 

Overfitting and feature redundancy in QSAR studies usually make 
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prediction and/or classification unreliable [14]. Recently, machine 
learning and deep learning techniques effectively overcome these 
problems, and have successfully identified anti-cancer peptides [15], 
anti-microbial peptides [16], therapeutic peptides [17], and 
anti-hypertensive peptides [18]. Especially, deep learning-based QSAR 
techniques have shown various advantages, e.g. (i) automatically 
extracting features from raw, high-dimensional, and heterogeneous 
physicochemical data, (ii) exactly meeting the requirement of modeling 
for large-scale chemical molecule data, (iii) handling peptide samples 
with inconsistent sequence lengths, and (iv) effectively avoiding over-
fitting problems [14,19–21]. However, deep learning-based QSAR has 
not yet been used for prediction of antioxidant peptides. To the best of 
our knowledge, AnOxPePred [22] based on deep convolutional neural 
network (CNN) is currently the only online server for predicting the 
antioxidant activity of peptides. AnOxPePred displays a prediction 
performance better than a k-NN sequence identity-based approach on 
various metrics. 

Several issues, in the antioxidant peptide modeling study, including 
(i) difficulties in feature extraction, (ii) low prediction accuracy, and (iii) 
poor model transparency and interpretability [14,19,22], still exist. The 
present work seeks to construct an artificial intelligent (AI)-based QSAR 
platform for prediction of antioxidant peptides using the bi-directional 
long short-term memory (BiLSTM) neural network. The BiLSTM neural 
network models can bi-directionally extract the coding features of more 
than 1000 residues from peptide sequences [23], which not only effec-
tively avoids the overfitting and sample length inconsistency problems, 
but also greatly improves the prediction performance [14]. BiLSTM 
neural network has been applied to the prediction of antifungal peptides 
[24], antibacterial peptides [25], and human leukocyte antigen I-bind-
ing peptides [26]. These models provide important references for the 

construction of advanced antioxidant peptide predictors. 
To solve these issues, we designed a sequence-based interpretable 

feature representation learning strategy by combining AADs and 
BiLSTM to explore the structure-activity relationships of antioxidant 
peptides. We then developed an online server AnOxPP to predict and 
design antioxidant peptides. This study provides methodological guid-
ance for understanding the structure− activity relationship of peptide 
sequences. 

2. Materials and methods 

Fig. 1, shows the construction process of AnOxPP. It includes (i) data 
collection and preprocessing, (ii) peptide feature generation, (iii) 
BiLSTM architecture, (iv) model training and evaluation, (v) feature 
selection and importance score, and (vi) web server designing. Details 
were described as follows. 

2.1. Dataset collection 

The sequences of antioxidant peptides were collected from the DFBP 
(http://www.cqudfbp.net/) and BIOPEP-UWM (https://biochemia. 
uwm.edu.pl/biopep-uwm/) databases. After removing duplications 
and deleting samples with inconsistent experimental results, 1060 
antioxidant peptides with radical scavenging activities were obtained 
and used as the positive dataset. For non-antioxidant peptides without 
experimental evidence, a huge amount of random sequences with 
different lengths were generated by one in-house Java program. Se-
quences with more than 90% similarity to the positive samples were 
removed using CD-HIT [27]. Subsequently, 1060 sequences that have a 
same length and number distribution with the positive samples were 

Fig. 1. Construction workflow of the online server AnOxPP. First, to collect the peptides and translate them into feature vectors by single- and combined- AADs. 
Second, to train BiLSTM models and optimize hyperparameters. Then, to select combined-AADs by using forward feature selection. Next, to interpret the main 
structure-activity characteristics of antioxidant peptides. Finally, to design and build the web predictor. 
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randomly selected as the negative samples. The positive and negative 
sample datasets were randomly split at a ratio of 8:2 to generate the 
training set and the test set. 72 highly active antioxidant peptides that 
have no intersection with the above two datasets collected from litera-
tures published in 2021–2022 were used as the second validation set. In 
addition, the AnOxPePred dataset was downloaded from the AnOx-
PePred web site to compare the predictive performance of the 
AADs-based BiLSTM neural network model. We provided download 
links for all datasets (Table S1). 

2.2. Sequence feature encoding 

Total 22 AADs that describe the types and physicochemical proper-
ties of natural amino acids were collected from literatures (Table S2). 
These AADs were used to characterize each residue of the peptides, 
thereby to generate multiple matrixes (number of residues × number of 
feature descriptors) for a peptide. These matrixes were used as the input 
parameters of the BiLSTM network. We adopted two coding strategies: 
(i) Single-AADs: 22 AADs were input as independent codes to train the 
model; (ii) Combined-AADs: the key feature values of the residues were 
sequentially extracted by the forward selection method. As a result, the 
best feature codes were selected from 22 single-AADs based on the 
prediction accuracy of the trained model on the test set. As shown in 
Fig. S1A, the selected single-AADs was then linearly spliced with the rest 
of the single-AADs in turn, and the combined codes that maximizes the 
model prediction accuracy were screened out. The above iterative pro-
cesses were repeated until 22 single-AADs were concatenated into a 20 
× 179 matrix. Finally, the combination descriptors with the highest 
prediction accuracy were selected as the optimal codes. Single-AADs and 
combined-AADs are defined as follows： 
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where V denotes the characteristic variables of the 20 natural amino 
acids, n represents the number of variables, and the dimension of the 
single-AADs characteristic matrix is 20 × n. 
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where V denotes the characteristic variables of the 20 natural amino 
acids, n and t represent the number of variables encoded by different 
single-AADs, and m denotes the numbering of the 22 groups of single- 
AAD, and its range is 1–22. 

2.3. BiLSTM architecture 

To build a web server, the BiLSTM network in the Deeplearning 4j 
framework (DL4J: https://deeplearning4j.org/) was used to train the 
model. As shown in Fig. 2, three network layers were sequentially set up 
and grid search was used to optimize the parameters, including the 
sequence transcoding, BiLSTM, and recurrent neural network ouput 
(RnnOutput) layers. The sequence transcoding layer was used to convert 
the peptide sequences into the feature vectors. The BiLSTM layer con-
sisted of a forward layer and a backward layer. The input length was 
equal to the code length of AADs, and the activation function was set 

Fig. 2. BiLSTM architecture flowchart. Three network layers were set up, including sequence transcoding layer, BiLSTM layer, and RnnOutput layer. The BiLSTM 
layer consists of a forward LSTM layer and a backward LSTM layer. 
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"tanh". The hidden layer outputs of the forward and backward LSTM 
networks were fed to the output layer through a linear connection 
(length 128). The activation function of the RnnOutput layer was set to 
"sigmoid" for binary classification (antioxidant peptides or non- 
antioxidant peptides). The detailed calculation process of the LSTM 
unit was performed as described by Hochreiter S. et al. [23,28]. 

2.4. Evaluation of performance 

Six evaluation indexes, including Precision, Sensitivity, Specificity, 
Accuracy, Matthew’s correlation coefficient (MCC), and the area under 
the receiver operating characteristics curves (AUC), that obtained from 
five-fold cross validation and external validation were used to evaluate 
the predictive ability of the model. They were defined as follows: 

Precision=
TP

TP + FP  

Sensitivity=
TP

TP + FN  

Specificity=
TN

TN + FP  

Accuracy=
TP + TN

TP + TN + FP + FN  

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

√

where TP, FP, TN, and FN represented the number of correctly predicted 
antioxidant peptides, incorrectly predicted antioxidant peptides, 
correctly predicted non-antioxidant peptides, and incorrectly predicted 
non-antioxidant peptides, respectively. 

Currently, there is no standard parameter importance evaluation 
method for the BiLSTM neural network, thus we masked the single or 
multiple parameters of the samples with "0" to discuss the importance of 
single or same attribute parameters (Fig. S2), and the score was calcu-
lated by the following formula: 

Importance score=(AccuracynonMask − AccuracyMask) × 100 

AccuracynonMask and AccuracyMask represent the prediction accuracy 
of unmasked or masked features using the trained model. Accu-
racynonMask did not mask the feature parameters, but directly converted 
all features of the peptide sequences. While, AccuracyMask masked pa-
rameters and converted peptide sequences into input parameters con-
taining partial features. An importance score ≤0 indicated that the 
corresponding feature parameter had non or negative contribution to 
the model (i.e. redundant feature). An importance score >0 indicated 
that the corresponding parameter had a positive contribution to the 
model (i.e. key feature). 

2.5. Web server implementation 

The Web server was built using the HTML, JSP and JavaScript. The 
MySQL database was used for the data storage, and Java Web technol-
ogy was applied to deploy AnOxPP to the Tencent Cloud Server (Win-
dows Server 2012 R2, 64-bit). Model calls were implemented using the 
Java programs, and sequence features with experimental evidence and 
the predicted sequences can be visualized using the EChart (https://ech 
arts.apache.org/en/index.html). The developed AnOxPP platform can 
serve to predict, design, and analyze the structure-activity relationship 
of antioxidant peptides. 

3. Results and discussion 

3.1. Excellent predictive performance of single-AADs-based BiLSTM 
models 

Total 22 well-defined single-AADs with different dimensions that 
were collected from 22 literatures were used to describe the key features 
of the residues of the antioxidant peptides (Table S2). These single-AADs 
are One hot, DPPS, BLOSUM62, FASGAI, GRID, HESH, ISA-ECI, Lin’s 
scales, MS-WHIM, NNAAIndex, ProtFP, QTMS (ADFQ) indices, ST- 
scales, SVRG, SVWG, SVHEHS, T-scales, VHSE, VSTV, VSW, Z-scales, 
and P-scales with the dimensions of 20, 10, 10, 6, 7, 12, 2, 3, 3, 6, 8, 7, 8, 
16, 10, 13, 5, 8, 3, 9, 3 and 10, respectively. Each AAD can confer a NA 
(number of amino acid residues of a peptide) × D (dimension of an AAD) 
parameter matrix for a peptide. These parameters were used as the input 
of the BiLSTM model. The training set was first applied to train the 
single-AADs-based BILSTM models by five-fold cross validation. Then, 
the test set was used to evaluate the generalization ability of the trained 
model. The cross-validation results showed that only 17 single-AADs 
(feature number 5–20) contribute to the high prediction performance 
of the models, and gave rise of Accuracy of 0.828–0.949, MCC of 
0.656–0.899, and AUC of 0.903–0.987 for the models (Table S3). 
Additionally, the external prediction of the independent test set using 
the 17 models also yielded Accuracy of 0.831–0.942, MCC of 
0.663–0.885, and AUC of 0.899–0.984 (Table 1), indicating their 
excellent predictive capability. In summary, these results suggested that 
the single-AADs can effectively characterize the structure-activity in-
formation of the peptide sequences, and the BiLSTM models can accu-
rately predict the antioxidant activity of the peptides. 

3.2. SDPZ36 coding exhibited better characterization ability than single- 
AADs 

To optimize low-redundancy AADs, the single-AADs were linearly 
combined into the combined-AADs that have more eigenvalues. The new 
combined-AADs were further used as the input for BiLSTM model 
training. Five-fold cross validation was performed to train the bench-
mark training set, during which the features were iteratively selected 
using the forward feature selection method (Table S4). Then, the trained 
models were used to predict the antioxidant activity of the samples of 
the independent test set. The optimal features were further screened 
based on the external prediction accuracy (Table 2). Results from the 
cross and external validations implicated that the models with the input 
of the combined-AADs had the better predictive capability and were 
more robust than that with the single-AADs as the input (Table S4 and 
Table 2). As displayed in Fig. 3, the optimal models using the combined- 
AADs in each round had Accuracy ranging from 0.942 to 0.967, appar-
ently higher than that the single-AADs-based models (Accuracy≤0.942), 
indicating that the combined features were helpful for the model to learn 
more features of antioxidant peptides. As the number of feature pa-
rameters increased from 2 to 36, the prediction accuracy of the model 
was gradually improved, indicating that the quantity and quality of the 
effective features were continuously accumulated. The model exhibited 
the best predictive performance when 36 features were selected, sug-
gesting that the eigenvalues of the combined code have been accumu-
lated to the critical point. Combined_3 consisting of SVHEHS, DPPS, P- 
scales and Z-scales was named SDPZ36 and demonstrated as the best 
combined-AADs (Table S5). The specific screening process is shown in 
Fig. S1A. The average prediction accuracy of the SDPZ36 model on the 
independent test set was 0.967, 2.46% higher than that of the optimal 
single-AADs-based model, the SVHEHS model. As the number of features 
further increased, the prediction accuracy was stabilized at ~0.967. 
However, when the number reached 179, the accuracy was reduced to 
0.942, suggesting that redundant features not only increased the invalid 
weight of the model, but also increased the training difficulty. Therefore, 
the combination of SDPZ36 was considered as a set of low-redundancy 
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codes that can accurately characterize the antioxidant activity of 
peptides. 

Above results showed that the conversion from natural language of 
peptide sequences to machine language was closely related to the 
encoded information of AADs, including the number of features, phys-
icochemical significance, and feature redundancy. Therefore, the 
combined-AADs had more efficient feature transformation capability 
than the single-AADs, and can do better in comprehensive and accurate 
characterization of the important characteristics of the peptide residues. 
The BiLSTM model based on SDPZ36 learned the structure-activity re-
lationships of peptide sequences, eliciting an excellent generalization 
ability of the model. Therefore, the SDPZ36 was vastly important for 
further deciphering the structure-activity relationships of antioxidant 
peptides. 

3.3. SDPZ27 coding interpreted the key structure-activity features of 
antioxidant peptides 

SDPZ36 is a 20 × 36 parameter matrix which can characterize 36 
attributes of each amino acid. The scores of the 5th, 8th, 17th, 23rd, 
26th, 32nd, 33rd, 35th, and 36th parameters characterized by SDPZ27 
were less than 0 (Fig. 4A), indicating that these parameters were 
redundant and had no contribution to the identification of antioxidant 
peptides. Therefore, these redundant features were removed and a new 
set of SDPZ27 eigenvalues containing hydrophobic, electronic, 
hydrogen bond, and steric properties was obtained (The overall 
screening flowchart of SDPZ36 and SDPZ27 were described in Fig. S1). 
SDPZ27 was a 20 × 27 parameter matrix characterizing 27 features of 
each amino acid (Table S5 and Table S6). The SDPZ27-based model did 
not show the remarkable difference from the SDPZ36-based model in 
predicting the antioxidant activity of the test set samples (Table 2). The 
27 eigenvalues positively contributed to the prediction performance of 

Table 1 
Performance of models based on 22 single-AADs on the independent test set.  

No. Descriptor Matrix Accuracy Precision Sensitivity Specificity MCC AUC 

1 ISA-ECI 20 × 2 0.6582 0.6792 0.6141 0.7024 0.3230 0.7037 
2 MS-WHIM 20 × 3 0.6522 0.6553 0.6438 0.6606 0.3058 0.6834 
3 Lin’s scales 20 × 3 0.7532 0.7845 0.6997 0.8067 0.5100 0.8328 
4 VSTV 20 × 3 0.7236 0.7115 0.7535 0.6936 0.4484 0.8080 
5 Z-scales 20 × 3 0.7502 0.7339 0.7886 0.7118 0.5028 0.8382 
6 T-scales 20 × 5 0.8586 0.8527 0.8687 0.8485 0.7177 0.9320 
7 NNAAIndex 20 × 6 0.8333 0.8502 0.8094 0.8572 0.6675 0.9079 
8 FASGAI 20 × 6 0.9034 0.9077 0.8983 0.9084 0.8070 0.9638 
9 QTMS 20 × 7 0.8310 0.8301 0.8330 0.8290 0.6626 0.8988 
10 GRID 20 × 7 0.9316 0.9410 0.9212 0.9421 0.8636 0.9778 
11 ST-scales 20 × 8 0.9226 0.9279 0.9165 0.9286 0.8453 0.9727 
12 VHSE 20 × 8 0.8859 0.8840 0.8882 0.8835 0.7720 0.9482 
13 ProtFP 20 × 8 0.9091 0.9043 0.9152 0.9030 0.8183 0.9637 
14 VSW 20 × 9 0.9407 0.9366 0.9455 0.9360 0.8815 0.9786 
15 BLOSUM62 20 × 10 0.8502 0.8451 0.8579 0.8424 0.7007 0.9255 
16 P-scales 20 × 10 0.9155 0.9078 0.9253 0.9057 0.8313 0.9657 
17 DPPS 20 × 10 0.9256 0.9196 0.9327 0.9185 0.8513 0.9722 
18 SVWG 20 × 10 0.9347 0.9391 0.9300 0.9394 0.8698 0.9718 
19 HESH 20 × 12 0.9205 0.9150 0.9273 0.9138 0.8412 0.9733 
20 SVHEHS 20£13 0.9421 0.9550 0.9279 0.9562 0.8846 0.9842 
21 SVRG 20 × 16 0.9363 0.9491 0.9222 0.9505 0.8732 0.9788 
22 One hot 20 × 20 0.9327 0.9530 0.9104 0.9549 0.8664 0.9738  

Table 2 
Model performance and evaluation indexes based on combined-AADs on the independent test set.  

No. Coding Added AADs (Coding length)a Matrix Accuracy Precision Sensitivity Specificity MCC AUC 

1 SVHEHS SVHEHS (13) 20 × 13 0.9421 0.9550 0.9279 0.9562 0.8846 0.9842 
2 Combined_1 DPPS (10) 20 × 23 0.9626 0.9778 0.9468 0.9785 0.9259 0.9922 
3 Combined_2 P-scales (10) 20 × 33 0.9633 0.9720 0.9542 0.9724 0.9268 0.9908 
4 Combined_3 (SDPZ36) Z-scales (3) 20£36 0.9667 0.9813 0.9515 0.9818 0.9338 0.9907 
5 Combined_4 VSW (9) 20 × 45 0.9616 0.9793 0.9434 0.9798 0.9241 0.9947 
6 Combined_5 QTMS (7) 20 × 52 0.9589 0.9783 0.9387 0.9791 0.9187 0.9928 
7 Combined_6 HESH (12) 20 × 64 0.9566 0.9756 0.9367 0.9764 0.9139 0.9938 
8 Combined_7 ST-scales (8) 20 × 72 0.9549 0.9774 0.9313 0.9785 0.9108 0.9927 
9 Combined_8 ProtFP (8) 20 × 80 0.9532 0.9680 0.9374 0.9690 0.9069 0.9918 
10 Combined_9 T-scales (5) 20 × 85 0.9626 0.9771 0.9475 0.9778 0.9258 0.9948 
11 Combined_10 Lin’s scales (3) 20 × 88 0.9603 0.9797 0.9401 0.9805 0.9213 0.9926 
12 Combined_11 VSTV (3) 20 × 91 0.9586 0.9803 0.9360 0.9811 0.9182 0.9936 
13 Combined_12 GRID (7) 20 × 98 0.9582 0.9776 0.9380 0.9785 0.9173 0.9925 
14 Combined_13 BLOSUM62 (10) 20 × 108 0.9569 0.9742 0.9387 0.9751 0.9145 0.9921 
15 Combined_14 NNAAIndex (6) 20 × 114 0.9569 0.9755 0.9374 0.9764 0.9146 0.9920 
16 Combined_15 One hot (20) 20 × 134 0.9532 0.9707 0.9347 0.9717 0.9071 0.9917 
17 Combined_16 MS-WHIM (3) 20 × 137 0.9559 0.9715 0.9394 0.9724 0.9123 0.9921 
18 Combined_17 FASGAI (6) 20 × 143 0.9562 0.9683 0.9434 0.9690 0.9128 0.9935 
19 Combined_18 SVRG (16) 20 × 159 0.9549 0.9735 0.9354 0.9744 0.9106 0.9767 
20 Combined_19 SVWG (10) 20 × 169 0.9586 0.9763 0.9401 0.9771 0.9179 0.9642 
21 Combined_20 ISA-ECI (2) 20 × 171 0.9434 0.9583 0.9273 0.9596 0.8873 0.9804 
22 Combined_21 VHSE (8) 20 × 179 0.9424 0.9564 0.9273 0.9576 0.8853 0.9846 
23 SDPZ27 SVHEHS (11) + DPPS (8) + GRID (7) + Z-Scales (1) 20£27 0.9670 0.9901 0.9434 0.9906 0.9350 0.9949  

a Newly added single-AADs during forward feature selection. 
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the model (Importance score >0). The steric and hydrophobic properties 
did the most contribution to the model (Fig. 4B). The 27 parameters 
were divided into four categories (Fig. 4C and Table S7), including steric 
property, hydrophobic property, electronic property, and hydrogen 
bond contribution consisting of 9, 7, 9, and 2 parameters, respectively. 

Their contributions to the developed model showed the decreasing order 
of steric properties > hydrophobic properties > electronic properties >
hydrogen bond contributions (Fig. 4D). These results suggested that the 
key features encoded by SDPZ27 were suitable for model learning and 
identification of antioxidant peptides or non-antioxidant peptides. 

Previous studies have shown that molecular weight, spatial struc-
ture, hydrophobicity, amino acid composition, and distribution of pep-
tides were the main factors affecting their antioxidant activity [29–31]. 
The peptide samples in the dataset we used indicated that the four 
properties encoded by SDPZ27 were closely related to the sequence 
features of antioxidant peptides: (i) antioxidant peptides are mainly 
composed of 2–10 amino acid residues (Fig. B and S3A); (ii) Two ter-
minals of antioxidant peptides prefer hydrophobic amino acids (Leu, 
Ala, Pro, and Arg) and aromatic amino acids (Tyr). In addition, its 
N-terminus also prefers Val and Gly, while its C-terminus prefers Lys and 
Glu (Fig. S3C); (iii) antioxidant peptides are rich in hydrophobic amino 
acids (Pro, Leu, Ala, and Val) (6.17%–10.14%), hydrophilic amino acids 
Gly (8.05%), aromatic amino acids Tyr (6.73%), charged amino acids 
Glu (6.0%) and His (4.77%) (Fig. S3D). These key residues contain 
special functional groups (e.g. oxhydryl, guanidyl, imidazole, benzene 
ring, and ε-amino), which can be used as electron, hydrogen and proton 
donors to increase the antioxidant activity of peptides [32,33]. There-
fore, SDPZ27 accurately characterized the sequence length, N-/C-ter-
minus, amino acid residues, spatial configuration, hydrophobicity, and 
charged properties of antioxidant peptides. 

Our results were consistent with the previous studies that four 

Fig. 3. The average predicted accuracy on the independent test set based on 
different AADs. (A) 22 single-AADs. (B) 21 combined-AADs. The number in the 
parentheses represents the number of feature encodings. 

Fig. 4. Feature importance comparison between SDPZ36 and SDPZ27. (A) Importance scores for 36 feature parameters encoded in SDPZ36; (B) Importance scores for 
27 feature parameters encoded in SDPZ27; (C) Four attributes of SDPZ27 feature encoding; (D) Importance scores for four attributes encoded in SDPZ27. 
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pattern attributes encoded by SDPZ27 were key factors affecting the 
activities of antioxidant peptides. The antioxidant capacities of protein 
hydrolysates were negatively correlated with the size of their average 
molecular weights, such as cartilage collagen [34] and marine red algae 
[35]. Shorter peptides (<1 kDa) were more likely to interact with free 
radicals and could effectively inhibit the chain reactions of lipid per-
oxidation and scavenge ROS [36,37]. Hydrophobic amino acid residues 
of antioxidant peptides, such as Pro, Leu Val and Ala, promoted the 
interactions of peptides with free radicals by increasing the density of 
the water-lipid interfaces, which further enhanced their antioxidant 
activities [38,39]. Aromatic amino acids (Tyr, Trp, and Phe) stabilized 
reactive oxygen of radicals through transferring electron or proton from 
the aromatic groups [38,40]. For hydrophilic residues in the peptides, 
Gly was beneficial for maintaining the strong flexibility of the peptide 
backbone and could also serve as a hydrogen donor to eliminate ROS 
[41,42], Glu and Lys had a positive influence on Fe2+ chelating ability 
[43], and His could significantly promote the DPPH radical scavenging 
activity of peptides due to the high proton donating ability of its imid-
azole ring [44]. Polar amino acids, such Glu, Asp and Arg, could enhance 
the ability of chelating metal ion and scavenging HO⋅ of peptides 
[45–47]. Taken together, the multi-attribute and non-redundancy ma-
trix encoded by SDPZ27 characterized the sequence/structure features 
that are closely related to the activity of antioxidant peptides. In addi-
tion, not only the SDPZ27-based BiLSTM model exhibited robustness 
and high accuracy in prediction, but also provided a scientific expla-
nation for the key features of antioxidant peptides. 

3.4. AnOxPP outperformed the existing predictor 

To verify excellent performance of AnOxPP, we compared its pre-
diction ability with the existing predictor, AnOxPePred, using multiple 
datasets. AnOxPePred is a model based on One hot coding and CNN 
[22]. For AnOxPePred, the score value of 0.4 was obtained when it 
predicted its own dataset, generating optimal Accuracy (0.753) and MCC 
(0.433), Sensitivity (0.810), Specificity (0.627), and Precision (0.826) 
(Table S8). Therefore, we used 0.4 as the threshold for performance 
evaluation. Our BiLSTM model trained with SDPZ27 gave rise of 0.807 
for Accuracy, 0.558 for MCC, 0.861 for Sensitivity, 0.695 for Specificity, 
and 0.854 for Precision when predicting the AnOxPePred dataset 
(Table 3), an indicative of better performance for AnOxPP than AnOx-
PePred. The fact that AnOxPP outperformed AnOxPePred can be further 
supported by the prediction of the independent test set for external 
validation and another new dataset containing 72 antioxidant peptides. 
As shown in Table 3, AnOxPP produced 0.967 for Accuracy, 0.935 for 
MCC, 0.943 for Sensitivity, 0.991 for Specificity, and 0.990 for Precision 
when predicting the independent test set, and 0.819 for Accuracy when 
predicting the new antioxidant peptide dataset. All of these indexes are 
higher than that of AnOxPePred (Accuracy = 0.583, MCC = 0.168, 
Sensitivity = 0.570, Specificity = 0.600, and Precision = 0.670 for 

prediction of the independent test set, and Accuracy = 0.611 for pre-
diction of the new antioxidant peptide dataset). Therefore, above results 
indicated the BiLSTM model based on SDPZ27 has stronger learning 
ability than the CNN model based on One hot, and AnOxPP out-
performed AnOxPePred. 

3.5. Web server implementation 

The AnOxPP server (http://www.cqudfbp.net/AnOxPP/index.jsp) 
was built based on the optimal BiLSTM model trained by SDPZ27. 
AnOxPP consists of six modules, including Home, Pre-AnOxPs, Seq- 
Features, Pre-Libraries, Help, and Contact (Fig. S4). The AnOxPP plat-
form allows prediction, residue-based mutation screening, and 
structure-activity analysis of new antioxidant peptides. 

4. Conclusion 

In this study, a QSAR model AnOxPP based on the BiLSTM neural 
network and the optimized SDPZ27 feature matrix was established to 
predict the antioxidant activity of food-derived peptides. The non- 
redundant code SDPZ27 optimized by the forward selection method 
showed efficient conversion of sequence features. The importance of 
four decisive features of antioxidant peptides showed a decreasing order 
of steric properties > hydrophobic properties > electronic properties >
hydrogen bond contributions, suggesting that they were important fac-
tors affecting antioxidant activities of peptides. Importantly, AnOxPP 
outperformed the existing model AnOxPePred in prediction of three 
datasets, and accuracy were 0.8066, 0.9670, and 0.8194 for AnOx-
PePred dataset, the independent test set, and the new antioxidant pep-
tide dataset, respectively. In conclusion, AnOxPP helps to deeply 
understand the structure− activity relationship of antioxidant peptides 
and provide a methodological reference for the application of deep 
learning to study bioactive peptides. 
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Table 3 
Performance comparison of AnOxPP and AnOxPePred.  

Dataset Samples Predictor Accuracy MCC Sensitivity Specificity Precision 

Antioxidant 
peptides 

Non-antioxidant 
peptides 

AnOxPePred dataset 615 299 BiLSTMa 0.8066 0.5581 0.8607 0.6949 0.8537 
AnOxPePred 0.7527 0.4327 0.8102 0.6272 0.8260 

Independent test set 212 212 AnOxPPb 0.9670 0.9350 0.9434 0.9906 0.9901 
AnOxPePred 0.5825 0.1677 0.5703 0.6000 0.6698 

New antioxidant peptide dataset (Reported in 
2021 and 2022) 

72 0 AnOxPP 0.8194 – – – – 
AnOxPePred 0.6111 – – – –  

a BiLSTM represents the SDPZ27 encoding-based BiLSTM model trained on the dataset provided by AnOxPePred, and the average evaluation metrics for the five-fold 
cross-validation are listed. 

b AnOxPP denotes the optimal model trained on the training set constructed in this study by using SDPZ27 encoding and BiLSTM neural network. The AnOxPePred 
dataset used was provided by AnOxPePred. Score = 0.4 was considered as the effective classification threshold. The classification results of all thresholds were shown 
in Supplementary Tables S8–S12. 
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